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Summary 

When the problem of the diffraction of head seas by a slender body is solved by the method of matched 
asymptotic expansions it is known that the inner (cross-sectional) problem can be singular at a number of 
discrete frequencies, though the precise circumstances under which these singularities occur is not yet clear. 
Here, a body of rectangular cross-section is considered, a case for which an accurate solution can be readily 
calculated. For non-zero draught it is found that there are two frequencies of the incident wave field for which 
the problem is singular, unless the draught-to-beam ratio is sufficiently large, in which case there are none. 

1. Introduction 

Haren and Mei [3] have considered the diffraction of head-seas by a slender body of zero 
draught using the method of matched asymptotic solutions. They found numerically that 
the cross-sectional, or inner, problem possessed a singularity at a certain frequency 
dependent upon the beam of the body. This singularity corresponds to a non-uniqueness 
of the solution to the inner problem. The solution to the full problem remains finite 
though Haren and Mei did report a loss of accuracy close to this frequency. Subsequently, 
Yue and Mei [5] showed that the singularity is inherent in the mathematical problem, 
rather than a property of the method of solution as are the irregular frequencies of 
integral-equation methods. Yue and Mei showed that for a body of non-zero draft in 
shallow water the inner problem is singular at a single frequency and the solution has a 
simple pole there. They went on to consider bodies of zero draft in arbitrary finite-depth 
water and found similar behaviour. 

Rectangular bodies of non-zero draft have been considered to some extent by Aranha 
and Sugaya [1]. They found that, when they occur at all, the number of singular 
frequencies must be even and that there are no such frequencies if the draught-to-beam 
ratio is sufficiently large. Aranha and Sugaya [1] interpreted the singular frequencies by 
considering the full problem for a body of constant cross-section. Ursell [4] had found 
previously that at low frequencies the waves are diffracted away from the body leaving a 
comparatively wave-free zone along the body at sufficiently large distances from the bow. 
Aranha and Sugaya [1] have shown that for a range of frequencies immediately above the 
first singular frequency the solution remains oscillatory along the length of the body. 
Indeed, as each singular frequency is crossed there is a reversal in the type of behaviour. 
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The inner problem was solved by Aranha and Sugaya [1] using a hybrid-element method, 
which has the advantage that it may be applied to any cross-sectional shape. They 
presented a few results for a rectangular cross-section, however, for this geometry a more 
accurate solution may be obtained by the method of matched eigenfunction expansions. 
In this note this method is used to locate the singular frequencies as the geometry of the 
cross-section is varied. The location of these singularities is of interest to those proposing 
to carry out computations of the full diffraction problem because, as reported by Haren 
and Mei [3], the accuracy of the solution may be affected. 

The main results of the present work are that, for a body of rectangular cross-section, 
there are at most two singular frequencies and there are none whenever the draught-to- 
beam ratio exceeds 0.1. 

2. Governing equations and solution procedure 

The decomposition of the full diffraction problem into inner and outer problems is fully 
described by Haren and Mei [3]. For waves of frequency ~ and wavenumber k advancing 
in the direction of x increasing the total potential ~(x, y, z) is written as 

~p = exp( ikx ) . { cosh k ( z + h)  + ~b(x, y, z)} (1) 

where ~k describes the modification to the incident wave. In the scheme of matched 
asymptotics used by Haren and Mei [3] the inner problem is two-dimensional and to be 
solved at each different cross section. The equations for the inner problem are given by 
Yue and Mei [5]. For a rectangular body of draught D and beam 2b (Fig. 1) the inner 
problem potential must satisfy 

~ y y + t ~ z z - k 2 ~ = O ,  - h < z < 0 ,  lYl >b ,  (2a) 

- h < z <  - D ,  lYl <b ;  

09 2 
G - - ~ - ~ k = 0 ,  z = 0 ,  l Y l > b ;  (2b) 
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Figure 1. Definition sketch for the inner problem with a rectangular cross-section. 
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~z = 0, z = - h ;  (2~) 

@y=0, - O < z < 0 ,  [ Y l = b ;  (2d) 

q~z = - k s i n h k ( h - D ) ,  z = - D ,  ]Yl<b; (2e) 

and, for some constant C O , 

--, c0 I@l cosh k(z + h ) ,  I k y l  ~ oo. (21) 
/ 3  

The potential in each of the two regions labelled in Fig. 1 may be represented by an 
eigenfunction expansion (see Yue and Mei [5]). The problem is symmetric about y = 0 
and so the expansion will be given for y > 0 only. Thus, for region 1, 

oo 

~kl(Y, z)=AokyFlo(Z)- ~ A. exp( - r . ( y -b ) )F~ . ( z ) ,  y>b ,  (3a) 
n = l  

and, in region 2, 

~b2(y , z) = - c o s h  k(z  + h) + 
B. c o s h  r 2 . ( z )  q.Y 

cosh q.b ' Y < b, (3b) 
n ~ 0  

where the factor cosh q.b has been introduced for later convenience. The vertical 
eigenfunctions for region 1 are defined by 

F l . ( z ) = N ~ l c o s k . ( z + h ) ,  n = 0 , 1 , 2  . . . . .  (4a) 

where 

l ( h -  1 k.h),  (4b) N12, = ~ K sin2 

r 2 = k .  2 + k 2, (4c) 

and the k.(n 4= 0) are the positive real roots of 

tO 2 
- - =  - k .  tan k.h, (4d) 
g 

while k o = ik is one of the two imaginary roots. The vertical eigenfunctions for region 2 
are 

F20(Z ) ~--- (h - 0 )  -1/2, (5a) 

~ 2 . ( z )  = ( 2 / ( h  - 0 ) )  '/2 cos p . ( ~  + h) ,  . ,  0, (5b) 

where 

q~=p2 +k 2, ,, = o, 1, 2 . . . .  (5c) 
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and 

n~" 
P " = h - D '  n = 0 , 1 , 2  . . . .  (5d) 

The expansions for ~b~ and ~2 satisfy all of equations (2) with the exception of (2d), 
this latter equation is incorporated into the matching procedure. The solution proceeds in 
a standard way: ~Pl and WE are  matched on y = b and then the orthogonality properties 
of Fl.(Z ) and F2.(z ) are used to obtain two sets of equations linking the A. and B.. Full 
details of this type of procedure are given by Evans and McIver [2]. Either set of 
coefficients may be eliminated to obtain a single set of equations. However, the conver- 
gence properties of the systems are such that it is more advantageous to work with that 
for the B n. The equations are 

oo 

B,,,+ ~_, U,,,,,B,,=V,,,, m = 0 , 1 , 2  . . . .  (6) 
n : 0  

where 

U~=q.btanhq.b(-Co,.Co.+ ~ CmCj") 
j : l  rib ' 

(7a) 

V m -- N10C0,,, (7b) 

and 

1 - D  
dz. (7c) 

The set of equations (6) has a unique solution provided det(I  + U) is not equal to 
zero; the singular solutions occur when the system has no unique solution, that is, if 
det(I  + U) equals zero. If there is no incident wave train, then V,, is identically zero for 
all m. Therefore singular solutions of the inner problem occur at those frequencies for 
which the homogeneous problem, with no forcing from the incident wave, has a solution. 

3. Results 

The identification of the singular frequencies of the inner problem has been reduced to 
locating the zeros of an infinite determinant. This is done by first truncating the system 
(6) at a finite value of m and examining the behaviour numerically to find the zeros of the 
truncated determinant. The procedure is then repeated for a number of other truncations 
and the results extrapolated to give the location of the zeros of the infinite determinant. A 
discussion of the precautions required in locating the zeros of an infinite determinant of 
this type may be found in Evans and Mclver [2]. 

Results for the rectangular cross-section of zero draught are given by Yue and Mei [5] 
and precise agreement with their values is given by the present method. In the following, 
the singular frequencies will be identified by their corresponding wavenumber k'. In Fig. 
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Figure 2. The relationship between the draught D/h and k'b for beams b/h = 0.1 ( ~ )  and b/h = 0.2 
(×  x x ). The dashed lines indicate the maximum values of D/h for which the problem is singular with the 
given values of the beam. 

1.0 

Dma,/h 

0.5 

I I I 

- j 

J 

1 2 3 

/ 
/ 

Omox-- O'Z ~ . / " /  

b/h  

Figure 3, The maximum value Dmax/h of the draught for which the inner problem is singular as a function of 
the beam b/h. 
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Figure 4. The relationship between the beam b/h and k'h for fixed draught of D/h = 0.02. As b/h is very 
close to 0.1 over a large range of wavenumbers the natural logarithm of (b/h -0.1) has been used as ordinate. 

2 the values of k'b, as the draught D varies, are given for two fixed values of the beam. 
As in all of the geometries investigated, no more than two wavenumbers were found for 
which the inner problem becomes singular. Below a limiting value of D/h(= Dmax/h, 
say), there is a pair of singular frequencies for each value of D/h, at Dmax/h the two 
singular frequencies appear to coalesce. Close to Dmax/h convergence of the system is 
poor and the precise values of k'b are difficult to determine, though the value of Dmax/h 
itself is readily found by a similar extrapolation procedure as that used for the zeros of 
the determinant. The numerical evidence suggests that for small b/h then Dmax/b is 
approximately 0.2. From the shallow-water theory of Yue and Mei [5] it can be seen that 
Dm~x/h must approach unity as b/h tends to infinity. The intermediate behaviour is 
shown in Fig. 3. It is apparent that there are no singular frequencies whenever the 
draught-to-beam ratio D/2b is greater than 0.1, whatever the beam of the body. Aranha 
and Sugaya [1] give an upper bound on D/2b of approximately 0.26 for the existence of 
singular frequencies. 

As D/h tends to zero the limiting wavenumbers k'b, shown in Fig. 2 for two values of 
b/h, are distinct. For b/h = 0.1 then k'b tends to 0.993, while for b/h = 0.2, k'b tends to 
0.994. The two curves cross close to D/h = 0. As b/h increases, the value of k'b at 
D/h = 0 increases to the shallow-water limit (see Yue and Mel [5]) of approximately 2.4. 
Figure 4 shows the values of k'h for fixed draught as the beam varies. In this case with a 
fixed draught of D = 0.02 there are no singular frequencies for b/h less than about 0.1. 
As the beam becomes a significant proportion of the depth the singular behaviour occurs 
only for very long or very short waves. 
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